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1 POLARIZATION

1.1 Introduction

We know, in EM wave, the electric �eld and magnetic �eld oscillating perpendicularly
in the transverse plane w.r.t. the propagation direction. Polarization is the property of an
EM wave, which deals with the temporal and spatial variation of the orientation of �eld
vector (mainly, electric �eld) of the EM wave. Here we mainly discuss Jones formalism,
Stokes-Muller formalism and �nally apply those thing in elliptically polarized light.

1.2 Jones formalism

1.2.1 Jones Vector

Vector form of electric �eld of fully polarized EM wave propagating along z-axis is given
by

E(x, t) =

Ex(x, t)
Ey(x, t)
Ez(x, t)

 =

Ax(x)e
−i(kz−ωt−δx)

Ay(x)e
−i(kz−ωt−δy)

0

 =

Ax(x)e
iδx

Ay(x)e
iδy

0

 e−i(kz−ωt) (1.1)

We de�ne normalized3 Jones vector as

J(x, t) =
1√

A2
x +A2

y

[
Ax(x)e

iδx

Ay(x)e
iδy

]
(1.2)

Such examples of usual polarization states are given below [3],

Polarization state J

|H⟩
[
1
0

]
|V ⟩

[
0
1

]
|P ⟩ 1√

2

[
1
1

]
|M⟩ 1√

2

[
1
−1

]
|L⟩ 1√

2

[
1
i

]
|R⟩ 1√

2

[
1
−i

]
Table 1: Jones vector of usual polarization state

Some properties of Jones vector are

3normalized as J∗ J = 1
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1. The intensity of the EM wave is given by

I =
1

2
cϵ0(A

2
x +A2

y) =
1

2
cϵ0(E

∗E) =
1

2
cϵ0(J

∗J) (1.3)

2. For general elliptically polarized light we can measure the azimuth (α) ellipticity (ϵ)
of the polarization ellipse by comparing Jones vector J with [1][

cosα cos ϵ− i sinα sin ϵ
sinα cos ϵ+ i cosα sin ϵ

]

1.2.2 Jones Matrix & evolution of Jones vector

Jones matrix is a 2× 2 matrix assigned for a particular optical element. Let M be the
Jones matrix for an optical element s.t.

M =

[
m11 m12

m21 m22

]
then if a polarized light of Jones vector J in passes through that optical element then the
Jones vector of output light is given by

Jout = M J in (1.4)

⇒ Eout = M Ein (1.5)

To determine mij in M ,

1. Pass x-polarized light and determine Jout, then

Jout =

[
m11 m12

m21 m22

] [
1
0

]
=

[
m11

m21

]
2. Pass y-polarized light and determine Jout, then

Jout =

[
m11 m12

m21 m22

] [
0
1

]
=

[
m12

m22

]

Such examples of usual Jones matrix 4 are given below,[3]

Optical element M

Free space

[
1 0
0 1

]
x-polarizer

[
1 0
0 0

]
y-polarizer

[
0 0
0 1

]

4For polarizer the Jones matrix M = J J∗ where J is normalized Jones vector corresponding polar-
ization state s.t. Jout = MJ = (JJ∗)J = J(J∗J) = J
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Optical element M

Right circular polarizer 1
2

[
1 i
−i 1

]
Left circular polarizer 1

2

[
1 −i
i 1

]
Linear di-attenuator

[
a 0
0 b

]
Half-wave plate

with fast axis horizontal
e−iπ/2

[
1 0
0 −1

]
Quarter-wave plate

with fast axis horizontal
e−iπ/4

[
1 0
0 i

]
General phase retarder

[
eiϕx 0
0 eiϕy

]
Table 2: Jones matrix related to usual optical element

Some properties of Jones matrix are

1. Resultant Jones matrix for composition of n optical elements is given by

M = M1 M2 . . .Mn (1.6)

2. For an optical element when its optical axis aligned at an angle θ w.r.t. x-axis then
resultant Jones matrix for this rotated optical element is given by

M θ = R(−θ) M R(θ) (1.7)

where R(θ) is passive rotation matrix s.t.

R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
(1.8)

1.2.3 Drawback of Jones formalism

Main drawback of Jones formalism is that its application is restricted in fully polarized
light. This formalism cannot explain the partially polarized or unpolished light which we
frequently observe in practical use.

1.3 Stokes-Muller formalism

1.3.1 Coherency matrix

Coherency matrix of a EM wave is de�ned as [1]

C =
〈
E ⊗E†

〉
=
〈
EE†

〉
=

[
⟨ExE

∗
x⟩

〈
ExE

∗
y

〉
⟨EyE

∗
x⟩

〈
EyE

∗
y

〉] = [cxx cxy
cyx cyy

]
(1.9)

where ⊗ denotes Kronecker product and ⟨·⟩ denotes the temporal avg of the corresponding
quantity.

3



Examples of coherency matrix of usual polarization states are given below [4],

Polarization state J C

|H⟩
[
1
0

] [
1 0
0 0

]
|V ⟩

[
0
1

] [
0 0
0 1

]
|P ⟩ 1√

2

[
1
1

]
1
2

[
1 1
1 1

]
|M⟩ 1√

2

[
1
−1

]
1
2

[
1 −1
−1 1

]
|L⟩ 1√

2

[
1
i

]
1
2

[
1 −i
i 1

]
|R⟩ 1√

2

[
1
−i

]
1
2

[
1 i
−i 1

]
Un-polarized − 1

2

[
1 0
0 1

]
Table 3: Coherency matrix of usual polarization state

Some properties of coherency matrix are

1. It is a hermitian matrix i.e. C = C†

2. Trace and determinant o� the matrix are non-negative i.e. tr(C) > 0 & det(C) ≥ 0.

3. Tr(C) = ⟨ExE
∗
x⟩+

〈
EyE

∗
y

〉
is the time averaged intensity of input light.

4. Let the polarized light (of electric �eld Ein & coherency matrix Cin) passes through
an optical element (of Jones matrix M) then let output electric �eld be Eout by the
equation 1.5, then output coherency matrix Cout is given by

Cout =
〈
EoutE

†
out

〉
=
〈
(MEin) (MEin)

†
〉

=
〈
(MEin)

(
E†

inM
†
)〉

= M
〈
EinE

†
in

〉
M †

= M Cin M † (1.10)

1.3.2 Stokes parameters & Stokes vector

We see that coherency matrix C of any polarization state in table 3 can be written in
the linear combination of the 4 basis given below [5]

β =


[
1 0
0 1

]
︸ ︷︷ ︸

V0

,

[
1 0
0 −1

]
︸ ︷︷ ︸

V1

,

[
0 1
1 0

]
︸ ︷︷ ︸

V2

,

[
0 i
−i 0

]
︸ ︷︷ ︸

V3

 (1.11)
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Now we can write any coherency matrix C as

C =
1

2

3∑
i=0

SiVi (1.12)

Note that all Vi's are Hermitian, so obviously is C.

We call {S0, S1, S2, S3} as a Stokes parameter and the values of Si's are experimentally
measurable.

A Stokes vector S is de�ned as5

S =


S0
S1
S2
S3

 (1.13)

Examples of Stokes vector for di�erent polarization states are given below

Polarization state C S

|H⟩
[
1 0
0 0

] [
1 1 0 0

]T
|V ⟩

[
0 0
0 1

] [
1 −1 0 0

]T
|P ⟩ 1

2

[
1 1
1 1

] [
1 0 1 0

]T
|M⟩ 1

2

[
1 −1
−1 1

] [
1 0 −1 0

]T
|L⟩ 1

2

[
1 −i
i 1

] [
1 0 0 1

]T
|R⟩ 1

2

[
1 i
−i 1

] [
1 0 0 −1

]T
Un-polarized 1

2

[
1 0
0 1

] [
1 0 0 0

]T
Table 4: Stokes vector of usual polarization state

Note that all Jones vectors has Stokes vectors but converse need not to be true.

Now we see from the equation 1.12[
⟨ExE

∗
x⟩

〈
ExE

∗
y

〉
⟨EyE

∗
x⟩

〈
EyE

∗
y

〉] = C =
1

2

3∑
i=0

SiVi =
1

2

[
S0 + S1 S2 + iS3
S2 − iS3 S0 − S1

]
(1.14)

From there we can write

S =


S0
S1
S2
S3

 =


⟨ExE

∗
x⟩+

〈
EyE

∗
y

〉
⟨ExE

∗
x⟩ −

〈
EyE

∗
y

〉
⟨EyE

∗
x⟩+

〈
ExE

∗
y

〉
i
(
⟨EyE

∗
x⟩ −

〈
ExE

∗
y

〉)
 (1.15)

5for intensity normalised Stokes vector, s =
[
1 s1 s2 s3

]
where si = Si/S0

5



Now for a polarized light,

C =

[ 〈
A2

x

〉 〈
AxAye

−iδ
〉〈

AxAye
iδ
〉 〈

A2
y

〉 ]
and S =


S0
S1
S2
S3

 =


〈
A2

x +A2
y

〉〈
A2

x −A2
y

〉
⟨2AxAy cos δ⟩
⟨2AxAy sin δ⟩

 (1.16)

where δ = δy − δx.

1.3.3 Measurement of Stokes parameters

To measure the 4 Stokes parameter of polarized light, we have to do 4 steps experiment.
In each case, we pass the light through various optical elements and measure the (time-
averaged) intensity, [6]

Step I Pass the light through homogenous isotropic medium (or, free space) and measure
the intensity. From table 2 and eq. 1.10, we get,

Cout = M Cin M † =

[
1 0
0 1

]
1

2

[
S0 + S1 S2 + iS3
S2 − iS3 S0 − S1

] [
1 0
0 1

]
=

1

2

[
S0 + S1 0

0 S0 − S1

]
(1.17)

So the measured intensity will be

I0 = tr(Cout) = S0 (1.18)

Step II Pass the light through x-polarizer and measure the intensity. From table 2 and eq.
1.10, we get,

Cout = M Cin M † =

[
1 0
0 0

]
1

2

[
S0 + S1 S2 + iS3
S2 − iS3 S0 − S1

] [
1 0
0 0

]
(1.19)

So the measured intensity will be

I1 = tr(Cout) =
1

2
(S0 + S1) (1.20)

Step III Pass the light through the polarizer with transmission axis is at 45◦ and measure the
intensity. Then from eq. 1.7, M for this polarizer will be

M = R(−45◦)

[
1 0
0 0

]
R(45◦) =

1

2

[
1 1
1 1

]
(1.21)

From eq. 1.10, we get,

Cout = M Cin M † =
1

2

[
1 1
1 1

]
1

2

[
S0 + S1 S2 + iS3
S2 − iS3 S0 − S1

]
1

2

[
1 1
1 1

]
(1.22)

So the measured intensity will be

I1 = tr(Cout) =
1

2
(S0 + S2) (1.23)

6



Step IV Pass the light through right circular polarizer and measure the intensity. From table
2 and eq. 1.10, we get,

Cout = M Cin M † =
1

2

[
1 i
−i 1

]
1

2

[
S0 + S1 S2 + iS3
S2 − iS3 S0 − S1

]
1

2

[
1 i
−i 1

]
(1.24)

So the measured intensity will be

I1 = tr(Cout) =
1

2
(S0 + S3) (1.25)

From the equations 1.18, 1.20, 1.23 and 1.25, we can get the values of all Si's.

Another way of measuring the Stokes parameter is passing the light beam through �rst
wave-plate and then polarizer and measuring the intensity (see �g 1).

Figure 1: Experimental measurement of the Stokes polarization parameters (ref [7])

For di�erent alignment of optical axes of wave-plate and polarizer, the intensity of the
detector is,

I(θ, ϕ) =
1

2
[S0 + S1 cos 2θ + S2 sin 2θ cosϕ− S3 sin 2θ sinϕ] (1.26)

where ϕ is the phase shift of orthogonal electric �eld component introduced by wave-plate
with speci�c orientation and θ is the transmission axis orientation angle of polarizer. [8][7]

From there one can show that,

S0 = I(0, 0) + I(π/2, 0) (1.27)

S1 = I(0, 0)− I(π/2, 0) (1.28)

S1 = 2I(π/4, 0)− S0 (1.29)

S3 = S0 − 2I(π/4, π/2) (1.30)

1.3.4 Poincare sphere representation

For total intensity normalised Stokes vector is s =
[
1 s1 s2 s3

]T
where si = Si/S0.

Observe that s is a 3-dimensional quantity. Therefore we can write,
1
s1
s2
s3

→

s1s2
s3



7



Poincare sphere representation is a coordinate system to de�ne the state of polarization
of light where the mutually orthogonal coordinate axes are {s1, s2, s3}.

s2

s3

s1

Example of special cases are

Case I For fully polarized light,

s1 =
A2

x −A2
y

A2
x +A2

y

(1.31)

s2 =
2AyAy cos δ

A2
x +A2

y

(1.32)

s3 =
2AyAy sin δ

A2
x +A2

y

(1.33)

from there we can see

s21 + s22 + s23 = 1 (1.34)

which implies that fully polarized has the locus at any point in the sphere of radius
1 in Poincare sphere representation.

Case II For fully un-polarized light,

s1 = s2 = s3 = 0 (1.35)

which implies that fully un-polarized has the locus at any the centre (0, 0, 0) in the
sphere of radius 1 in Poincare sphere representation.

Case III For partially polarized light,

0 < s21 + s22 + s23 < 1 (1.36)

1.3.5 Degree of Polarization

Degree of Polarization is the measure of polarization of light.

We de�ne

� Total degree of polarization, P =
√
s21 + s22 + s23

� Degree of linear polarization =
√
s21 + s22

8



� Degree of circular polarization = s3

Note that, 0 ≤ P ≤ 1

For any mixed polarization state we can decompose the Stokes vector into polarized
and un-polarized components,

1
s1
s2
s3

 =


√
s21 + s22 + s23

s1
s2
s3


︸ ︷︷ ︸
fully polarized, DOP=1

+


1−

√
s21 + s22 + s23
0
0
0


︸ ︷︷ ︸

un-polarized

(1.37)

1.3.6 Muller matrix & Evolution of Stokes vector

Similar to the Jones matrix, Muller matrix is a 4× 4 matrix assigned for a particular
optical element. Let M be the Muller matrix for an optical element s.t.

M =

µ11 · · · µ14
...

. . .
...

µ41 · · · µ44


then if a light of Stokes vector Sin passes through that optical element, then the Stokes
vector of output light is given by

Sout = M Sin (1.38)

Some properties of Jones matrix are

1. Resultant Muller matrix for composition of n optical elements is given by

M = M1 M2 . . .Mn (1.39)

2. When th optical element is aligned at an angle θ w.r.t. x-axis then resultant Muller
matrix (similar to Jones matrix) for this rotated optical element is given by

Mθ = T−1(θ) M T (θ) (1.40)

where T (θ) is passive rotation matrix in Poincare sphere representation w.r.t s3 axis,
s.t.

T (θ) =


1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1

 (1.41)

Note that, in eq. 1.41, if we write
1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1

 −→

 cos 2θ sin 2θ 0
− sin 2θ cos 2θ 0

0 0 1

 (1.42)

we see that it is proper rotation matrix of rotation angle 2θ in Poincare sphere w.r.t s3
axis. And as we know that rotation of θ of electric �eld results in rotation of 2θ in azimuth
angle of Stokes vector in Poincare sphere.
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1.3.7 Relationship between Jones & Stokes-Muller formalism

Let, J be jones vector, M be the Jones matrix, S be the Stokes vector and M be the
Muller matrix s.t. equations 1.4 and 1.38 is satis�ed.

Let us de�ne coherency vector of 1.9 as

L =
[
cxx cxy cyx cyy

]T
(1.43)

and Wolf matrix W as

Lout = W Lin (1.44)

then the relation between Jones and Wolf matrix is

W = M ⊗M∗ (1.45)

Now from equations 1.9 and 1.15, one can write

S = AL (1.46)

where,

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

 (1.47)

then the relation between Jones and Muller matrix is

M = A (M ⊗M∗)A−1 (1.48)

Note that this relationship is only possible in both ways, if the light is fully polarized
light as all Jones vectors has Stokes vectors but converse need not to be true.

1.4 More on Elliptically polarized light

1.4.1 Jones vector of elliptically polarized light

In this section we will discuss the generalized polarization ellipse of an EM wave. Let
our electric �eld vector of EM wave is given by

E =

[
Ex

Ey

]
=

[
a1 cos(τ + δ1)
a2 cos(τ + δ2)

]
where τ = kz − ωt and ta1, a2 ≥ 0 (1.49)

by eliminating τ we get,

1

a21
E2

x +
1

a22
E2

y −
2 cos δ

a1a2
ExEy = sin2(δ) (1.50)

where δ = δ2 − δ1. The eq. 1.50 is equation of circle when a1 = a2, otherwise, of ellipse.
[2]
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Now we do the change of basis {Ex, Ey} 7−→ {Eξ, Eη} (See �g. 2) s.t. electric �eld in
{Eξ, Eη} basis be

E →F

F =

[
Eξ

Eη

]
=

[
a cos(τ + δ0)
±b sin(τ + δ0)

]
where a ≥ b ≥ 0 (1.51)

which is parametric form of canonical ellipse6 in {Eξ, Eη} basis.

Figure 2: Polarization ellipse

Let ψ be the azimuth angle of the ellipse then

F = R(ψ)E (1.52)

⇒
[
Eξ

Eη

]
=

[
cosψ sinψ
− sinψ cosψ

] [
Ex

Fy

]
(1.53)

⇒
[
a cos(τ + δ0)
±b sin(τ + δ0)

]
=

[
cosψ sinψ
− sinψ cosψ

] [
a1 cos(τ + δ1)
a2 cos(τ + δ2)

]
(1.54)

We want value of a, b, After some tedious calculation [2], we reach to some important
results, given below

a2 + b2 = a21 + a22 (1.55)

± ab = a1a2 sin δ (1.56)

tanχ := ± b
a
where χ ∈ [−π

4
,
π

4
] (1.57)

tanα :=
a2
a1

where α ∈ [0,
π

2
] (1.58)

tan 2ψ = tan 2α cos δ (1.59)

sin 2χ = sin 2α sin δ (1.60)

where ψ is the azimuth and χ is ellipticity of the polarization ellipse.

To see the handedness of the rotation of electric �eld vector in transverse plane,

Case I For right-handed polarization, sin δ > 0, then from equations 1.56, and 1.57, we can
say

tanχ ≥ 0 ⇒ χ ∈
(
0,
π

4

]
6± before b denotes the handedness of the rotation of electric �eld vector in transverse plane.
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Case II Similarly for left-handed polarization, sin δ < 0, then from equations 1.56, and 1.57,
we can say

tanχ ≤ 0 ⇒ χ ∈
[
−π
4
, 0
)

Now the Jones vector of elliptical polarization in the form of ellipticity and azimuth
will be, [1]

J =

[
cosψ cosχ− i sinψ sinχ
sinψ cosχ+ i cosψ sinχ

]
(1.61)

1.4.2 Stokes vector and corresponding Poincare representation

From the eq. 1.16, we can write for our case,

S =


S0
S1
S2
S3

 =


a21 + a22
a21 − a22

2a1a2 cos δ
2a1a2 sin δ

 = S0


1

cos 2χ cos 2ψ
cos 2χ sin 2ψ

sin 2χ

 (1.62)

So in Poincare sphere representation with axes {S1, S2, S3}, the required vector is

S0


1

cos 2χ cos 2ψ
cos 2χ sin 2ψ

sin 2χ

 −→ (S0 cos 2χ cos 2ψ, S0 cos 2χ sin 2ψ, S0 sin 2χ) (1.63)

The evolution of azimuth (ψ) and ellipticity (χ) of the polarization state in Poincare
representation is shown in the �gure 3.

(a)
(b)

Figure 3: polarization ellipse and corresponding Poincare representation

For any ψ and χ in the domain, the locus of state of polarization in Poincare sphere
representation will always be on the sphere about origin of radius S0. The pole and
equatorial positions denotes the circular and linear polarization, respectively.
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2 GAUSSIAN BEAM

2.1 Introduction

In optics and laser physics, the Gaussian beam stands as a fundamental concept, where
the intensity of the light beam follows Gaussian curve. Its elegance lies in the fact that,
it propagate over long distances with minimal divergence and di�raction. This distinctive
feature makes it a preferred choice in a wide array of applications in optics and laser
physics. Here we will brie�y discuss about the di�erent modes of Gaussian beams, as well
as their properties.

2.2 Paraxial wave equation

From Maxwell's 3-D wave equation for electric �eld in vacuum,

∇2E(r, t)− 1

c2
∂2

∂t2
E(r, t) = 0 (2.1)

Here we will consider the scalar form of the equation.

To �nd the scalar solution, let our �rst ansatz be,

E(x, y, z, t) = F (x, y, z)eiωt (2.2)

Putting it in eq. 2.1, we get time -independent Helmholtz equation i.e.

∇2F (x, y, z) + k2F (x, y, z) = 0 where k2 =
ω2

c2
(2.3)

For light to travel in z-direction, our 2nd ansatz be,

F (r) = ψ(x, y, z)e−ikz (2.4)

Considering the slowly varying envelope approximation[1] that,∣∣∣∣∂2ψ∂z2
∣∣∣∣≪ k

∣∣∣∣∂ψ∂z
∣∣∣∣≪ k2 |ψ| (2.5)

and putting 2.4 in eq. 2.3 gives Paraxial wave equation,

∇2
Tψ − 2ik

∂ψ

∂r
= 0 (2.6)

where transverse Laplacian,∇T =
∂2

∂x2
+
∂2

∂y2
or in cylindrical coordinate,∇T =

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2
.

2.3 Scalar wave solution - Gaussian beam

We will solve the paraxial wave equation in cylindrical coordinate {r, ϕ, z}. To get a
solution for which intensity is of Gaussian like and radially symmetric (i.e. no variation
with ϕ), our �rst ansatz be, [11][10]

ψ(r, z) = A exp

[
−i
(
p(z) +

kr2

2q(z)

)]
= A exp [−ip(z)]︸ ︷︷ ︸

�rst term

exp

[
−i kr

2

2q(z)

]
︸ ︷︷ ︸

second term

(2.7)
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where second term is related to Gaussian intensity and �rst term is additional phase factor.
Putting this, in eq, 2.6, we get[

k2

q2

(
dq

dz
− 1

)
r2 − 2k

(
dp

dz
+
i

q

)]
ψ = 0 (2.8)

To satisfy this, for all r, we get

dq

dz
− 1 = 0 (2.9)

dp

dz
+
i

q
= 0 (2.10)

Let's �rst calculate eq. 2.9.

dq

dz
− 1 = 0 ⇒ q(z) = z + q0 (2.11)

putting this in the second term of expression 2.7 at z = 0,

exp

[
−i kr

2

2q(0)

]
= exp

[
−ikr

2

2q0

]
(2.12)

which is a phase factor does not give Gaussian intensity. So to get Gaussian intensity, q0
must be imaginary. Let q0 = iz0, then

q(z) = z + iz0 (2.13)

Now the second term of expression 2.7 at z = 0 be,

exp

[
−kr

2

2z0

]
= exp

[
− r2

w2
0

]
(2.14)

where

w2
0 =

2z0
k

=
λz0
π

⇒ z0 =
πw2

0

λ
(2.15)

We call z0 confocal parameter or Rayleigh range of the beam.

Now from expression 2.13, we calculate 1/q(z).

1

q(z)
=

1

z + iz0
=

z

z2 + z20
− i

z0
z2 + z20

(2.16)

Then the second term of expression 2.7 be,

exp

[
−i kr

2

2q(z)

]
= exp

[
− kr2z0
2(z2 + z20)

]
︸ ︷︷ ︸

term A

exp

[
−i kr2z

2(z2 + z20)

]
︸ ︷︷ ︸

term B

(2.17)

Write term A of 2.17 as

exp

[
− kr2z0
2(z2 + z20)

]
= exp

[
− r2

w2(z)

]
(2.18)
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which is Gaussian, where

w2(z) = w2
0

[
1 +

(
z

z0

)2
]

(2.19)

We call w(z) physical radius/half-width of the beam.

Write term B of 2.17 as

exp

[
−i kr2z

2(z2 + z20)

]
= exp

[
−i kr2

2R(z)

]
(2.20)

where

R(z) = z

[
1 +

(z0
z

)2]
(2.21)

We know for spherical wave,

E(r, t) ∼ 1

r
ei(ωt−kr) (2.22)

Figure 4: Radius of curvature of spherical wavefront (Ref. [9])

Let R be the radius of curvature of spherical wavefront. Now for any point r = (x, y,R)
on z = R plane, r will be

r =
√
x2 + y2 +R2 (2.23)

For collimated beam, we restrict radius of curvature measurement near r = (0, 0, R), so

r =
√
x2 + y2 +R2 ≈ R+

x2 + y2

2R
(2.24)

Now from 2.22,

E(r, t) ∼ 1

r
eiωte−ikre−ik x2+y2

2R (2.25)

comparing with 2.2,

ψ(x, y, z) ∼ e−ik x2+y2

2R (2.26)

comparing 2.26 in the above expression with term B of 2.17, we conclude that R(z) in 2.21
is radius of curvature of wavefront near r = 0 of collimated beam in far �eld.
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Putting 2.19 and 2.21 in eq. 2.16,

1

q(z)
=

1

R(z)
− i

λ

πw2(z)
(2.27)

Now we simplify the �rst term in 2.7. Putting 2.13 in 2.10 and by solving the di�erential
equation, we get,

dp

dz
=

−i
q

=
−i

z + iz0
⇒ i p(z) = ln

[
1− i

z

z0

]
(2.28)

As we can write

1− i
z

z0
=

√
1 +

(
z

z0

)2

exp

[
−i tan−1

(
z

z0

)]
putting this in the above expression of i p(z), our �nal expression will be

i p(z) =
1

2
ln

[
1 +

(
z

z0

)2
]
− i tan−1

(
z

z0

)
(2.29)

Finally putting 2.27 and 2.29 in 2.7, we get, [11][10]

ψ(r, z) = A exp

[
−i
(
p(z) +

kr2

2q(z)

)]
= A exp

[
−1

2
ln

[
1 +

(
z

z0

)2
]
+ i tan−1

(
z

z0

)
− i

kr2

2

(
1

R(z)
− i

λ

πw2(z)

)]

=
A√

1 +
(

z
z0

)2 exp
(
i tan−1

(
z

z0

))
exp

(
−i kr2

2R(z)

)
exp

(
− r2

w2(z)

)

⇒ ψ(r, z) = A

(
w0

w(z)

)
︸ ︷︷ ︸

term I

exp

(
i tan−1

(
z

z0

))
︸ ︷︷ ︸

term II

exp

(
−i kr2

2R(z)

)
︸ ︷︷ ︸

term III

exp

(
− r2

w2(z)

)
︸ ︷︷ ︸

term IV

(2.30)

In that expression,

1. Term I −→ related to spreading of beam along propagation in z.

2. Term II −→ related to Gouy phase.

3. Term III −→ gives radius of curvature of beam wave front.

4. Term IV −→ gives radially symmetric Gaussian intensity pro�le.
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2.4 Characteristics of Gaussian Beam

Figure 5: A beam pro�le (Ref. [9])

Some characteristics of Gaussian beam are

1. Intensity of Gaussian beam in any transverse plain is,

I(r, z) =
1

2
ϵ0c|E∗E| = 1

2
ϵ0c|ψ∗ψ|

=
1

2
ϵ0c|A|2

(
w0

w(z)

)2

exp

(
− 2r2

w2(z)

)
(2.31)

(a) Intensity variation in a cross section (b) Intensity variation along z-axis

Figure 6: Gaussian intensity pro�le for z0 = 1, w0 = 1

2. Rate of energy of Gaussian beam passes through any transverse plain is given by

W =

∫∫ ∞

−∞
dx dy I(x, y, z)

=
1

2
ϵ0c|A|2

(
w0

w(z)

)2 ∫∫ ∞

−∞
dx dy exp

(
−2(x2 + y2)

w2(z)

)
=

1

2
ϵ0c|A|2

(
w0

w(z)

)2 ∫ ∞

−∞
dx exp

(
− 2x2

w2(z)

) ∫ ∞

−∞
dy exp

(
− 2y2

w2(z)

)
=

1

2
ϵ0c|A|2

(
w0

w(z)

)2

(
√
πw(z))2 =

1

2
ϵ0c|A|2w2

0 (2.32)

which is constant throughout the propagation along z-axis.
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3. Radius of curvature R(z) of the wavefront is given by

R(z) = z

[
1 +

(z0
z

)2]
(2.33)

For z = 0 R→ ∞
For z >> z0, then R ≈ z

0 1 2 3 4 5 6
0

2

4

6

z

R
(z
)

Figure 7: Variation of radius of curvature with z (z0 = 1)

4. Beam half-width (see �g. 5) is given by

w(z) = w0

√
1 +

(
z

z0

)2

(2.34)

For z = 0, then w = w0 (Beam waist)

For z >> z0, then w(z) = w0
z
z0

Di�raction angle at far �eld is given by

2θ = 2 lim
z→∞

dw

dz
= 2

w0

z0
=

2λ

πw0
(2.35)

E�ective area of the beam in a cross section is
1

2
πw2(z)

5. Gouy phase represents the di�erence in phase shift of a Gaussian beam w.r.t. a plane
wave of the same wavelength near r = 0. [15] Gouy phase of a Gaussian beam is
given by

ϕg(z) = tan−1

(
z

z0

)
(2.36)

The Gouy phase vary form −π/2 to π/2 continuously as z goes from −∞ to ∞,
shown in �g. 8
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Figure 8: Variation of Gouy phase with z

6. Inside Rayleigh length (z0), the laser beam is highly collimated and intensity is also
very high. So gain medium is kept in between z = −z0 and z0 to get maximum
stimulated emission from gain medium.

2.5 Beam Tracing using ABCD matrix

Like ray tracing using ABCD matrix, beam tracing is also done using ABCD matrix.
We know that q parameter gives all the characteristic of the beam as

q(z) = z + iz0

1

q(z)
=

1

R(z)
− i

λ

πw2(z)

Figure 9: Schematic of beam tracing

By using ABCD matrix we can understand the change in q parameter of input and
output the Gaussian beam, say qin and qout respectively. Let the ABCD matrix of the
optical element is [

A B
C D

]
(2.37)

Then relation between qin and qout is

qout =
A qin +B

C qin +D
(2.38)
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2.6 Resonator stability and resonator mode-frequency

Now we will discuss about the resonator stability for the Gaussian beam. The resonator
cavity (or optical cavity) is made of two highly re�ecting mirror align in particular manner
so that light con�ned in the cavity re�ects multiple times, producing modes with certain
resonance frequencies. [12] If a Gaussian beam is to be a mode of a resonator with spherical
mirrors, then radius of curvature of beam wave-front must be equal to that of the mirror.

Figure 10: Schematic of beam resonator of two mirrors of radius of curvature R1 & R2

Let radius of curvature of �rst and second mirror are R1 and R2 respectively, length of
resonator cavity is L, then [9]

R(z1) = z1 +
z20
z1

= −R1 (2.39)

R(z2) = z2 +
z20
z2

= R2 (2.40)

z2 − z1 = L (2.41)

Lets de�ne,

gi = 1− L

Ri
(2.42)

where Ri > 0 for concave and < 0 for convex mirror. By considering the four relation, and
the properties of Gaussian beam, we get, [9]

1. Mirror locations w.r.t. beam waist location, z0 be

z1 = − Lg2(1− g1)

g1 + g2 − 2g1g2
(2.43)

z2 = z1 + L (2.44)

2. Let spot sizes of beam at �rst, second mirrors and beam waist be w1, w2 and w0

respectively, then

w1 =

(
λL

π

)1/2( g2
g1(1− g1g2)

)1/4

(2.45)

w2 =

(
λL

π

)1/2( g1
g2(1− g1g2)

)1/4

(2.46)

w0 =

(
λL

π

)1/2( g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2

)1/4

(2.47)
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Note that w0 to be a real value,

g1g2(1− g1g2) > 0

⇒ g1g2 /∈ [0, 1] (2.48)

This is the condition of stable resonator. The cases when g1g2 = 0, 1 is neither stable nor
unstable, is called marginal stability.

From 2.4 and 2.30, we see that the spatial phase of Gaussian beam near the centroid
(i.e. r ≈ 0) be

Φ(z) = kz − tan−1

(
z

z0

)
(2.49)

For light con�ned in the cavity to be in standing wave mode, phase change in a round trip
i.e. from �rst mirror after re�ecting at second mirror to again �rst mirror, should be an
integral multiple of 2π. So phase change from �rst mirror to second mirror is an integral
multiple of π. Then

Φ(z2)− Φ(z1) = mπ

k(z2 − z1)−
[
tan−1

(
z2
z0

)
− tan−1

(
z1
z0

)]
= mπ, where m = 0,±1,±2, . . . (2.50)

If the mode frequency is ν, k = 2πν/c, then

νm =
c

2L

[
m+

1

π
cos−1(

√
g1g2)

]
(2.51)

This is longitudinal mode of Gaussian beam.

2.7 Different modes of Gaussian beams

Here we will discuss mainly two types of higher order Gaussian beams i.e.

1. Hermite-Gaussian (HG) beam

2. Laguerre-Gaussian (LG) beam

2.7.1 Hermite-Gaussian beam

In the expression 2.30, we get the radially symmetric Gaussian beam solution. But we
now seek higher order solution of Gaussian beam which is rectangular symmetric.

Lets take the ansatz as,

ψ(r, z) = A g

(
x

w(z)

)
h

(
y

w(z)

)
exp

[
−i
(
p(z) +

kr2

2q(z)

)]
(2.52)

Putting this in Paraxial wave equation 2.6, and solving the di�erential equation, [9] we
get,

ψm,n(r, z) =A

(
w0

w(z)

)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
exp

(
− r2

w2(z)

)
·

exp

(
i (m+ n+ 1) tan−1

(
z

z0

)
− i

kr2

2R(z)

)
(2.53)
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where Hi is i th degree Hermite polynomial and other symbols are as usual. See for
m = 0 = n we recover the Gaussian solution of 2.30 which we call as zero order HG beam.
For di�erent values of m an n, we will get diferent type of higher order HG beam, these
are called transverse electromagnetic mode of order (m,n) or, TEMmn.

Some characteristics of HG beams are given below,

1. Intensity of HG beam is given by

Im,n(x, y, z) =
cϵ

2
|A|2

[
Hm

(√
2x

w(z)

)]2 [
Hn

(√
2y

w(z)

)]2
exp

(
2(x2 + y2)

w2(z)

)
(2.54)

Due to the number of zeros equals the degree of Hermite polynomial, we will see
m number of horizontal and n number of vertical node in intensity pro�le of the
TEMmn beam. See �gure 12.

2. Rate of energy of HG beam passes through any transverse plain is given by

W =

∫∫ ∞

−∞
dx dy I(x, y, z)

=
1

2
ϵ0c|A|2

(
w0

w(z)

)2 ∫ ∞

−∞
dx exp

(
− 2x2

w2(z)

)[
Hm

(√
2x

w(z)

)]2
(2.55)

the integration terms of 2.55 are in the form of∫ ∞

−∞
Hl exp

(
−aξ2

)
dξ =

∫ ∞

−∞

(
l∑

k=0

ckξk

)
exp
(
−aξ2

)
dξ =

l∑
k=0

ck

∫ ∞

−∞
ξk exp

(
−aξ2

)
dξ

as the values of
∫∞
−∞ ξk exp

(
−aξ2

)
dξ is �xed7 and for �nite value of l, W is �nite and

constant throughout the propagation along z-axis.

3. Radius of curvature of HG beam is same as simple Gaussian beam for all modes.

4. Gouy phase for di�erent order HG beam is given by

ϕg(η, z) = η tan−1

(
z

z0

)
where η = m+ n+ 1 (2.56)

η = 1

η = 2

η = 3

−20 −10 0 10 20
−2π

−π

0

π

2π

z/z0

ϕ
g

Figure 11: Variation of Gouy phase with z for HG beam

7as nth moment of a random variable of Gaussian distribution has a �xed value for a particular integer
values of n [17]
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(a) TEM00 (b) TEM01 (c) TEM02

(d) TEM10 (e) TEM11 (f) TEM12

(g) TEM20 (h) TEM21 (i) TEM22

Figure 12: Intensity variation for di�erent TEM in a cross section (z = 0, z0 = 1, w0 = 1)

2.7.2 Laguerre-Gaussian beam

In the expression 2.30, we get the radially symmetric Gaussian beam solution. But we
now seek higher order solution of Gaussian beam which is not radially symmetric i.e. vary
with ϕ.

Let's take the ansatz as,

ψ(r, ϕ, z) = A g

(
y

w(z)

)
exp

[
−i
(
p(z) +

kr2

2q(z)
+ lϕ

)]
(2.57)

Putting this in Paraxial wave equation 2.6, and solving the di�erential equation, [18][11]
we get

ψp,l(r, ϕ, z) =A
w0

w(z)

[
r
√
2

w(z)

]|l|
L|l|
p

(
2r2

w2(z)

)
exp

(
− r2

w2(z)

)
·

exp

(
−ilϕ+ i(2p+ l + 1) tan−1

(
z

z0

)
− i

kr2

2R(z)

)
(2.58)

where l is vortex quantum number, takes integer value, L
|l|
p is associated Laguerre polynomial

and other terms are as usual.
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(a) p = 0, |l| = 0 (b) p = 0, |l| = 1 (c) p = 0, |l| = 2

(d) p = 1, |l| = 0 (e) p = 1, |l| = 1 (f) p = 1, |l| = 2

(g) p = 2, |l| = 0 (h) p = 2, |l| = 1 (i) p = 2, |l| = 2

Figure 13: Intensity variation for di�erent modes in a cross section (z = 0, z0 = 1, w0 = 1)

Some characteristics of HG beams are given below,

1. Intensity of LG beam is given by

Ip,l(r, z) =
cϵ

2
|A|2

[
w0

w(z)

]2 [ r√2

w(z)

]2|l| [
L|l|
p

(
2r2

w2(z)

)]2
exp

(
− 2r2

w2(z)

)
(2.59)

See intensity plot for corresponding LG beam in �gure 13. For |l| ̸= 0 the intensity

of centre is zero and the value of p denotes the number of radial nodes as L
|l|
p has p

number of zeros.

2. Rate of energy of HG beam passes through any transverse plain is given by

W =

∫∫ ∞

−∞
dx dy I(x, y, z)

=
1

2
ϵ0c|A|2

(
w0

w(z)

)2 ∫ ∞

−∞
dx

(
2r2

w2(z)

)|l| [
L|l|
p

(
2r2

w2(z)

)]2
exp

(
− 2r2

w2(z)

)
(2.60)

By same argument as HG beam, we can concludeW is �nite and constant throughout
the propagation along z-axis
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(a) p = 0, l = 0 (b) p = 0, l = 1 (c) p = 0, l = 2

(d) p = 1, l = 0 (e) p = 1, l = 1 (f) p = 1, l = 2

(g) p = 2, l = 0 (h) p = 2, l = 1 (i) p = 2, l = 2

Figure 14: Phase variation for di�erent modes in a cross section (z = 0, z0 = 1, w0 = 1)

3. Phase of the LG beam, unlike Gaussian beam, not only depends on the r and z, but
also on ϕ. Phase of LG beam is given by

ΦLG(r, ϕ, z) = arg(ψp,l(r, ϕ, z)) (2.61)

Phase plot for di�erent order of LG beam at z = 0 is given in �gure 14.

4. As we will see later section, unlike the HG beam, LG bream carry orbital angular
momentum due to its phase variation w.r.t. ϕ which results helical phase-front of
the beam.
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2.8 Maxwell-Gaussian beam (with polarization)

According to [13], let us consider electric �eld E and magnetic �eld E of a EM wave
propagating in z-direction, we write, in Cartesian coordinate,8

E(r, t) = E0 e
i(kz−ωt) =

E0x(r)
E0y(r)
E0y(r)

 ei(kz−ωt) (2.62)

B(r, t) = B0 e
i(kz−ωt) =

B0x(r)
B0y(r)
B0y(r)

 ei(kz−ωt) (2.63)

As E and B satis�es Maxwell's equation in free space, [14] and using ω/k = c, we get,

∇ ·E = 0 (2.64)

⇒ ikE0z +∇ ·E0 = 0 (2.65)

∇ ·B = 0 (2.66)

⇒ ikB0z +∇ ·B0 = 0 (2.67)

∇×E = −∂B
∂t

(2.68)

⇒ ikẑ ×E0 +∇×E0 = ikcB0 (2.69)

∇×B =
1

c2
∂E

∂t
(2.70)

⇒ ikẑ ×B0 +∇×B0 = −ik1
c
E0 (2.71)

Assuming paraxial approximation 2.6, we get paraxial wave equation in vector form,(
∂2

∂x2
+

∂2

∂y2
+ 2ik

∂

∂z

){
E0

B0

}
= 0 (2.72)

So each component of E0 and B0 will satisfy the paraxial equation. So,

∂

∂z
=

i

2k

(
∂2

∂x2
+

∂2

∂y2

)
(2.73)

Now considering slowly varying envelop approximation 2.5 for each component of E0

and B0, from 2.65 and 2.67, we get,

E0z =
i

k

(
∂E0x

∂x
+
∂E0y

∂y

)
(2.74)

B0z =
i

k

(
∂B0x

∂x
+
∂B0y

∂y

)
(2.75)

Now putting 2.74 in 2.69, and using 2.73, matching B0 component-wise we get,

cB0x = −E0y +
1

2k2

(
∂2E0y

∂x2
− ∂2E0y

∂y2
+ 2

∂2E0x

∂x∂y

)
(2.76)

cB0y = E0x +
1

2k2

(
∂2E0x

∂y2
− ∂2E0x

∂x2
− 2

∂2E0y

∂x∂y

)
(2.77)

cB0z =
i

k

(
∂ cB0x

∂x
+
∂ cB0y

∂y

)
=
i

k

(
∂E0x

∂y
− ∂E0y

∂x

)
(2.78)

8For cylindrical coordinate, ref [16]
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Similarly, putting 2.75 in 2.69, and using 2.73, matching E0 component-wise we get,

1

c
E0x = B0y +

1

2k2

(
∂2B0y

∂x2
− ∂2B0y

∂y2
− 2

∂2B0x

∂x∂y

)
(2.79)

1

c
E0y = −B0x +

1

2k2

(
∂2B0x

∂x2
− ∂2B0x

∂y2
+ 2

∂2B0y

∂x∂y

)
(2.80)

1

c
E0z =

i

ck

(
∂E0x

∂x
+
∂E0y

∂y

)
=
i

k

(
∂B0y

∂x
− ∂B0x

∂y

)
(2.81)

Let ψx(r) and ψy(r) are the dominant x and y component of electric �eld satisfying
paraxial wave equation. If we write magnetic �eld component as [13]

cB0x = −ψy +
1

4k2

(
∂2ψy

∂x2
− ∂2ψy

∂y2
+ 2

∂2ψx

∂x∂y

)
(2.82)

cB0y = ψx +
1

4k2

(
∂2ψx

∂y2
− ∂2ψx

∂x2
− 2

∂2ψy

∂x∂y

)
(2.83)

cB0z =
i

k

(
∂ψx

∂y
− ∂ψy

∂x

)
(2.84)

and electric �eld component as [13]

E0x = ψx +
1

4k2

(
∂2ψx

∂x2
− ∂2ψx

∂y2
+ 2

∂2ψy

∂x∂y

)
(2.85)

E0y = ψy −
1

4k2

(
∂2ψy

∂x2
− ∂2ψy

∂y2
+ 2

∂2ψx

∂x∂y

)
(2.86)

E0z =
i

k

(
∂ψx

∂x
+
∂ψy

∂y

)
(2.87)

then the eq. 2.82 - 2.87 satisfy the paraxial Maxwell's relations 2.76 - 2.81 up-to the order
of 1/(kw0)

2, where w0 is Rayleigh length of Gaussian beam.

Now we will consider two cases of polarization for HG beam - linear and circular
polarization.

1. Linear polarization
Let the dominant polarization is in x direction, then ψx = ψm,n of 2.53 and ψy = 0.
The electric �eld components are

E0x =ψm,n (2.88)

E0y =
1

2k2
∂2ψm,n

∂x∂y

=
1

4k2w2
0

(
4mnψm−1,n−1 − 2mψm−1,n+1 − 2nψm+1,n−1 + ψm+1,n+1

)
(2.89)

E0z =
i

k

∂ψm,n

∂x

=
i√

2kw0

(
2mψm−1,n − ψm+1,n

)
(2.90)
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Here we use the the following properties of Hermite polynomials, [23] i.e. ∀x ∈ R
and ∀n ∈ N,

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (2.91)

d

dx
Hn(x) = 2nHn−1(x) (2.92)

2. Circular polarization
Similarly for LCP, ψx = ψm,n and ψy = iψm,n, the electric �eld components, using
2.91 and 2.92, are

E0x =
1√
2
ψm,n (2.93)

E0y =
i√
2
ψm,n (2.94)

E0z =
i

2kw0

(
4mψm−1,n − ψm+1,n + i2nψm,n−1 − iψm,n+1

)
(2.95)

2.9 Relationship between LG & HG modes

According to [24], for n,m = 0, 1, 2, . . .

n+m∑
k=0

(2i)kP(n−k,m−k)
k (0)Hn+m−k(x)Hk(y)

=

{
2n+m(−1)mm!(x+ iy)n−mLn−m

m (x2 + y2), n ≥ m

2n+m(−1)nn!(x+ iy)m−nLm−n
n (x2 + y2), m > n

(2.96)

where

P(n−k,m−k)
k (0) =

(−1)k

2kk!

dk

dtk
[
(1− t)n(1 + t)m

]∣∣∣∣
t=0

(2.97)

Now the scalar �eld representations of HG and LG beam are

UHG
m,n(x, y, z) =

CHG
m,n

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
exp

(
−(x2 + y2)

w2(z)

)
·

exp

(
i (m+ n+ 1)η − i

k(x2 + y2)

2R(z)

)
(2.98)

ULG
n,m(x, y, z) =(−1)min(n,m)

CLG
m,n

w(z)

[√
2(x2 + y2)

w(z)

]|n−m|

L
|n−m|
min(n,m)

(
2(x2 + y2)

w2(z)

)
·

exp

(
−(x2 + y2)

w2(z)

)
exp

(
−i(n−m) arg(x+ iy)− i(n+m− 1)η − i

kr2

2R(z)

)
(2.99)
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where9

R(z) =
z20 + z2

z
(2.100)

w(z) =

√
2(z20 + z2)

kz
(2.101)

η(Z) = tan−1

(
z

z0

)
(2.102)

and the normalization constants, such that
∫∫

dx dy |U | = 1, are

CHG
m,n =

√
2

πn!m!
2−(m+n)/2 (2.103)

CLG
m,n =

√
2

πn!m!
min(n,m)! (2.104)

Here to get the LG beam representation, use l = n−m and p = min(n,m) in 2.58. [22]

Using the identity 2.96, the LG beam can be decomposed into various order of HG
beam by, [20]

ULG
m,n =

n+m∑
k=0

ikb(n,m, k) UHG
m+n−k,k (2.105)

where,

b(n,m, k) =
1

k!

√
(n+m)!k!

2n+mn!m!

dk

dtk
[
(1− t)n(1 + t)m

]∣∣∣∣
t=0

(2.106)

9here w(z) is not the beam half-width but scaled version of that.
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3 MOMENTUM OF LIGHT

3.1 Introduction

We know, in addition to its dual nature as waves and particles, EM wave such as light
possesses the capability to carries momentum despite its lack of mass. Here we will brie�y
discuss about di�erent types of momentum carried by EM wave before going to spin-orbit
interaction of light in next chapter.

3.2 Linear and angular momentum of light

Momentum carried by EM wave can be two types, linear and angular momentum. The
momentum density of EM wave is momentum per unit volume.

If linear momentum density is p and linear momentum is P then,

p =
1

c2
S = ϵ0E ×B (3.1)

P =

∫
p dτ (3.2)

Now let the monochromatic �eld with angular frequency ω, then

E(r, t) = Re
{
E(r)e−iωt

}
=

1

2
(Ee−iωt +E∗eiωt) (3.3)

B(r, t) = Re
{
B(r)e−iωt

}
=

1

2
(Be−iωt +B∗eiωt) (3.4)

From Maxwell-Faraday equation in free space, we know that, [26]

∇× E = − ∂

∂t
B (3.5)

⇒ ∇×E = iωB (3.6)

The total energy is given by

W =

∫
dτ

I

c
=
ϵ0
2

∫
dτ E∗ ·E (3.7)

Now time-averaged Poynting vector is given by, [25][26]

⟨S⟩ = 1

µ0
⟨E ×B⟩ = 1

µ0

1

2
Re{E∗ ×B} (3.8)

From eq. 3.1 and 3.2 and using 3.6 and 3.8, time-averaged linear momentum is given
by

P =
1

c2

∫
dτ ⟨S⟩ (3.9)

=
ϵ0
2

∫
dτ Re{E∗ ×B}

=
ϵ0
2iω

∫
dτ Re{E∗ × (∇×E)} (3.10)
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On partial integration and using the transversality of E, considering the magnitude of E
decreasing very rapidly when r → 0, [21] we get10

P =
ϵ0
2iω

∫
dτ

 ∑
ξ=x,y,z

E∗
ξ∇Eξ

 (3.11)

which is quantum mechanical equivalent for linear momentum of a particle.

Let angular momentum density is j and angular momentum is J then,

j =
1

c2
r × S = ϵ0r × (E ×B) (3.12)

J =

∫
j dτ (3.13)

Similarly from eq. 3.12 and 3.13 and using 3.6 and 3.8, time-averaged angular momen-
tum,

J =
1

c2

∫
dτ r × ⟨S⟩ (3.14)

=
ϵ0
2

∫
dτ r × Re{E∗ ×B}

=
ϵ0
2iω

∫
dτ Re{r × (E∗ × (∇×E))} (3.15)

Now similarly on partial integration and using the transversality of E, considering the
magnitude of E decreasing very rapidly when r → 0, [21][22] we get11

J =
ϵ0
2iω

∫
dτ

 ∑
ξ=x,y,z

E∗
ξ (r ×∇)Eξ

+
ϵ0
2iω

∫
dτE∗ ×E (3.16)

Now according to [27] & [21], within the paraxial approximation, to get time-averaged
energy, linear momentum and angular momentum per unit length i.e. W, P and J re-
spectively, along the beam propagating in z-direction, we have to integrate throughout the
transverse xy-plane. So,

Wz =
ϵ0
2

∫∫
dx dy E∗ ·E (3.17)

Pz =
ϵ0
2iω

∫∫
dx dy ⟨E × (∇×E)⟩z (3.18)

Jz =
ϵ0
2iω

∫∫
dx dy [r × ⟨E × (∇×E)⟩]z (3.19)

3.3 More on angular momentum

Let the electric �eld of the paraxial EM wave is [1]

E(x, y, z) = F (x, y, z) eikz (3.20)

10see derivation in Chapter I in ref. [28]
11see derivation in Chapter I in ref. [28]
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s.t. F is the slowly varying spatial envelop, satis�es the paraxial wave equation 2.6 i.e.

∇2
TF + 2ik

∂F

∂r
= 0

also assumed that the beam waist w0 (transverse dimension of the beam) is assumed to be
much smaller than the di�raction length, ld = kw2

0 and z- component of F is smaller than
transverse component by a factor of w0/ld. [29][21][1]

From previous eq. 3.19, z-component of J for 3.20 is given by

Jz(z) =
ϵ0
2iω

∫∫
dx dy

[
F ∗
ξ

(
x
∂

∂y
− y

∂

∂x

)
Fξ

]
ξ=x,y︸ ︷︷ ︸

1st term

+
ϵ0
2iω

∫∫
dx dy (F ∗

xFy + F ∗
yFx)︸ ︷︷ ︸

2nd term

(3.21)

Note that, in 3.21, we can separately identify two terms. According to [1], the �rst is
associated with transverse distribution of electric �eld (amplitude and phase) as x ∂

∂y −y
∂
∂x

is equivalent to ∂
∂ϕ in cylindrical coordinate and the second term to the polarization of

electric �eld. Thus it is concluded,[21] within the paraxial approximation, that

1. �rst term is the orbital angular momentum (OAM) per unit length in z of the EM
wave,

L =
ϵ0
2iω

∫∫
dx dy

[
F ∗
ξ

(
x
∂

∂y
− y

∂

∂x

)
Fξ

]
ξ=x,y

=
ϵ0
2iω

∫∫
dx dy

[
F ∗
ξ (r ×∇)z Fξ

]
ξ=x,y

(3.22)

which is quantum mechanical equivalent of z-component of the angular momentum
of a particle.

2. second term is the spin angular momentum (SAM) per unit length in z,

S =
ϵ0
2iω

∫∫
dx dy (F ∗

xFy + F ∗
yFx) (3.23)

3.3.1 Orbital and spin Angular Momentum

Let envelop F corresponding to the EM wave 3.20 for a vortex beam (e.g. LG beam)
be,

F (r, ϕ) = u(r) exp(−ilϕ) p̂ (3.24)

where eilϕ refers to helical phase front, and p̂ = pxx̂+ pyŷ+ pz ẑ refers to unit polarization
direction of electric �eld. Putting it in 3.22 considering x ∂

∂y − y ∂
∂x ≡ ∂

∂ϕ , we get,

L =
ϵ0
2iω

∫∫
r dr dϕ

[
F ∗
ξ

∂

∂ϕ
Fξ

]
ξ=x,y

=
ϵ0
2ω
l
(
|px|2 + |py|2

)
2π

∫
r dr |u(r)|2
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considering z-component of p̂ is smaller than transverse component by a factor of w0/ld,
so |px|2 + |py|2 ≈ |px|2 + |py|2 + |pz|2 = |p̂|2 = 1, then

L =
πϵ0l

ω

∫
r dr |u(r)|2 (3.25)

For the SAM part 3.23,

S =
ϵ0
2iω

∫∫
r dr dϕ (F ∗

xFy + F ∗
yFx)

=
ϵ0
2iω

(p∗xpy − p∗ypx)2π

∫
r dr |u(r)|2 (3.26)

De�ne polarization helicity, σ as

σ = 2 Im(p∗x py) =
1

i
(p∗xpy − p∗ypx) (3.27)

then

S =
πϵ0σ

ω

∫
r dr |u(r)|2 (3.28)

The relation12 between polarization direction p̂ and normalized Jones vector J is p̂ =
Jeiδ, for some phase di�erence δ.

So

σ =
1

i
(p∗xpy − p∗ypx) =

1

i
(J∗

xJy − J∗
yJx) (3.29)

Using table 1,

1. For LCP, σ = 1
2i(1i+ 1i) = 1

2. For RCP, σ = 1
2i(−1i− 1i) = −1

3. for linearly polarized, σ = 1
i (1− 1) = 0, so no SAM.

Now for W in 3.17, we get,

Wz =
ϵ0
2

∫∫
r dr dϕE∗ ·E

=
ϵ0
2

∫∫
r dr dϕ F ∗ · F

=
ϵ0
2

(
|px|2 + |py|2 + |pz|2

)
2π

∫
r dr |u(r)|2

= πϵ0

∫
r dr |u(r)|2 (3.30)

See from 3.25 and 3.30,

L
Wz

=
l

ω
=

OAM

Total energy
(3.31)

12for polarized light only
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from 3.28 and 3.30,

S
Wz

=
σ

ω
=

SAM

Total energy
(3.32)

and from 3.31 and 3.32,

Jz

Wz
=

L+ S
Wz

=
l + σ

ω
=

Total AM

Total energy
(3.33)

We know for a photon the energy associated with it is ℏω, then from 3.31 and 3.32,
we can say, the OAM associated with one photon of paraxial vortex beam is lℏ and SAM
associated with one photon is σℏ.

3.3.2 Intrinsic and Extrinsic nature of angular momentum

If we observe the expression of Jz in 3.19, it may depends on the choice of the axis
(usually r = (0, 0)), from which we measure r. [1][30] But if we shift the r s.t.

r −→ r′ = r + r0 (3.34)

(x, y) −→ (x′, y′) = (x, y) + (x0, y0) (3.35)

then change of Jz will be

Jz −→ J ′
z = Jz + (r0 × P) · ẑ (3.36)

The change in angular momentum,

∆Jz = J ′
z − Jz = (r0 × P) · ẑ (3.37)

⇒ ∆Jz =
x0ϵ0
2

∫∫
dx dy ⟨E ×B⟩y +

y0ϵ0
2

∫∫
dx dy ⟨E ×B⟩x (3.38)

Now, we say the AM is intrinsic, when the AM does not depends on the choice of the
reference axis, and extrinsic when it depends on the choice of axis.

If the AM is to be intrinsic, then for all (x0, y0)

∆J = 0

⇒
∫∫

dx dy ⟨E ×B⟩y = 0 =

∫∫
dx dy ⟨E ×B⟩x (3.39)

From the SAM part, we see S does not depend on the choice of the axis, so SAM is
intrinsic. But for the OAM part, we see L depends on the choice of the axis, so OAM may
be intrinsic or extrinsic determined by, (from 3.22)

∆L =

∫∫
dx dy

[
F ∗
ξ (r0 ×∇)z Fξ

]
= 0, where ξ = x, y (3.40)
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4 SPIN-ORBIT INTERACTION

4.1 Introduction

The interaction between light and matter is a fascinating realm of physics. One crucial
of this interaction is the spin-orbit interaction on light. The underlying framework is the
interaction between the spin and orbital angular momentum of light. In this section, we
will brie�y discuss about that.

4.2 Spin-orbit energy

In quantum mechanics, spin-orbit interaction is a common phenomena. We can see
it in the splitting of spectral lines into �ne structure. For a simple case like H atom, a
electron in orbit around the nucleus, the spin-orbit coupling results from the interaction
between electron's spin magnetic moment and nucleus's orbital magnetic �eld, which we
will discuss below. [1][31]

The spin magnetic moment of a electron is given by

µs = − e

mec
S (4.1)

where e, me are absolute charge and mass of electron respectively and S is spin angular
momentum of electron.

For our system, the electric �eld is centrally symmetric i.e.

E = −1

e

dU

dr
r̂ = − 1

er

dU

dr
r (4.2)

where U is the potential energy,

U =
1

4πϵ0

e2

r
(4.3)

Now if electron rotates around the nucleus with instantaneous velocity v, then from the
rest frame of electron, the nucleus is rotating with −v around the electron thus creating a
magnetic �eld in centre, which is13

B = −1

c
v ×E = − 1

mec
E × P (4.4)

where P = mev is momentum.

Due to spin-orbit interaction, the corresponding interaction energy rises,

Hso = −µs ·B = − e

mec
S ·B = − e

m2
ec

2
S · (E × P ) =

1

m2
ec

2r

dU

dr
S · (r × P ) (4.5)

Taking orbital angular momentum L = r × P , we get,

Hso =
1

m2
ec

2r

dU

dr
S ·L (4.6)

We call Hso as Spin-orbit energy.
14

13the coe�cient 1/c is in cgs, but 1/c2 in SI. [32]
14By Thomas precision, multiplication of a factor of 1/2 is necessary to agree with experimental results.

It is informally known as the "Thomas half". [33]
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4.3 Geometric phase of light

We know from the knowledge of waves, there is the phase factor corresponding to
the EM wave due to optical path length di�erence, called dynamical phase. But there
is another phase factor other than dynamical one, due to the geometry or topology of
the evolution of the electromagnetic wave, we call it Geometric phase.[1] Geometric phases
arises from intrinsic angular momentum and rotations of coordinates. The geometric phase
and angular momentum underlie the SOI of light.[39] The two types of geometric phases,
will be discussed, are

1. Spin-redirection Berry phase

2. Pancharatnam-Berry phase

4.3.1 Spin-redirection Berry phase

This Berry phase associated with adiabatic evolution of wave-vector k. When the
wave vector complete a adiabatic cycle, we will �nd a geometric phase arises from it.
As an example, let a polarized light passes through a helical optic �bre with very low
(negligible) birefringence and no torsional stress15. After one helical patch, the k wave-
vector come to the same state, but gives rise of a helicity-dependant geometric phase16

called spin-redirection Berry phase. [39]

For circularly polarized light, we can write Jones vector as

J =

[
1
iσ

]
(4.7)

where σ is helicity (either +1 or −1).

Considering transversality of electric �eld, it will be tangent on the sphere in momentum
space. And in one adiabatic cycle of wave-vector w.r.t. kz, the non-trivial parallel transport
of the electric-�eld vectors takes place on the sphere.[39] So after transportation of a vector,
the vector is rotated by an angle Θ [35] i.e. the frame is rotated by an angle Θ where

Θ = 2π(1− cos θ) (4.8)

where θ is half-apex angle of the cone formed by sweeping the wave vector k in momentum
space (see �g 15b). Note that Θ is the solid angle obtained at the apex of the cone.

After one adiabatic cycle, electric �eld vector for circularly polarized light, J transform
into J ′ where

J −→ J ′ = J exp(iΘG) (4.9)

where ΘG is the acquired helicity-dependant geometric phase s.t.

ΘG = σΘ (4.10)

So,

|L⟩ −→ eiΘ |L⟩ (4.11)

|R⟩ −→ e−iΘ |R⟩ (4.12)

15Torsional stress produces circular birefringence by elasto-optic e�ect. [37]
16This is a non-holonomic process i.e. the �nal state depends on the path taken by the system. [34]
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(a) Evolution of polarization axis along helical optic �bre (ref.
[38])

(b) Evolution of wave-vector k
along helical optic �bre in momen-
tum space

Figure 15: Geometric Berry phase arises along helical optic �bre

Now for x-polarized light, |xin⟩ and |xout⟩ will be

|xin⟩ =
1√
2
(|L⟩+ |R⟩) (4.13)

|xout⟩ =
1√
2

(
eiΘ |L⟩+ e−iΘ |R⟩

)
(4.14)

So the x-polarized light is rotated by angle Θ after one cycle, shown in �g 15a. Note
that θ does not originate from intrinsic anisotropy and it is geometric one. We call it
spin-redirection Berry phase.

4.3.2 Pancharatnam-Berry Phase

Unlike the previous one, the Pancharatnam-Berry phase arises after a cyclic evolution
in Poincare sphere when the state of polarization changes keeping wave-vector k is �xed.
Convenient example of observation of Pancharatnam-Berry phase is Michelson interferom-
eter setup, (see �g. 16) in which one arm of the interferometer has two quarter wave-plates,
one (QP1) is �xed and another one (QP2) is rotatable. [40]

Figure 16: Schematic of Michelson interferometer setup for observation of Pancharatnam-
Berry phase (ref. [40])
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Fast axis of QP1 and QP2 are aligned at θ1 = π/4 and θ2 = β w.r.t. x-axis, respectively.
The input light is x-polarized. Then the polarization state of output light at di�erent part
of arm 2 in Michelson interferometer is shown in �g 17, and corresponding Jones calculus
shown in table 5.

Poincare
Sphere point
(pol. state)

Polarization state
(Jones vector, J)

A (|A⟩) JA =

[
1
0

]

R (|R⟩)
JR = R(−π/4)MQP R(π/4) JA =

eiϕ
′

2

[
1 + i 1− i
1− i 1 + i

] [
1
0

]
=
eiϕ

′

2

[
1 + i
1− i

]
=

1√
2

[
1
−i

]
exp(iϕ1)

B (|B⟩)

JB = R(−β)MQP R(β) JR

= eiϕ
′′
[
cos2(β) + i sin2(β) (1− i) sin(β) cos(β)
(1− i) sin(β) cos(β) sin2(β) + i cos2(β)

]
1√
2

[
1
−i

]
exp(iϕ1)

=

[
cos(β + π/4)
sin(β + π/4)

]
exp(iϕ2) exp(−iβ)

=

[
cos(φ)
sin(φ)

]
exp(iϕ3) exp(−iφ) where φ = β + π/4

C (|C⟩)
JC = MMirror JB = eiπ

[
−1 0
0 1

] [
cos(φ)
sin(φ)

]
exp(iϕ3) exp(−iφ)

=

[
− cos(φ)
sin(φ)

]
exp(iϕ4) exp(−iφ)

L (|L⟩) JL =

[
1
i

]
exp(iϕ5) exp(−i 2φ)

A (|A′⟩)
J ′

A =

[
1
0

]
exp(iϕ6) exp(−i 2φ)

= JA exp(iϕ6) exp(−i 2φ)

Table 5: Jones vector of polarization state in Pancharatnam-Berry phase

We see that the light with linear polarization state (|B⟩) acquired a additional phase
term i.e. exp(−i 2φ) which only depends on orientation of fast axis of QP2 i.e. φ = β+π/4
and does not depend on thickness and refractive index of the birefringent wave-plate, so
this phase is purely geometric one. Other all ϕ's are all dynamical phase factors. [1]
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(a) Michelson interferometer arm 2 (b) Corresponding cyclic evolution in
Poincare sphere

Figure 17: Evolution of polarization state in arm 2

We see after one cyclic evolution in Poincare sphere in path ARBCLA,

|A⟩ −→
∣∣A′〉 = |A⟩ exp(iϕ6 − i 2φ) (4.15)

So at photodiode the intensity variation w.r.t. β will be

I = (⟨A|+
〈
A′∣∣)(|A⟩+ ∣∣A′〉)

= ⟨A|A⟩ (1 + exp(−iϕ6 + i2φ)) (1 + exp(iϕ6 − i2φ))

= ⟨A|A⟩ (2 + 2 cos(2φ− ϕ6))

⇒ I(β) = 2 ⟨A|A⟩ (1− sin(2β − ϕ6)) (4.16)

Experimental veri�cation by Chyba et al (ref. [40]) is given in �gure 18.

(a) Measured intensity vs Rotation angle β of QP2,
�tted with eq. 4.16

(b) Measured phase shift vs rotation an-
gle β, with solid line of ϕ = 2β

Figure 18: Measurement of the Pancharatnam phase by Chyba et al (ref. [40])

4.3.3 Rotational frequency shift of light

Rotational frequency shift is the dynamical manifestation of Pancharatnam-Berry Phase.
Let there is half wave-plate rotating w.r.t. centre axis at Ω. If the alignment of the fast
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axis of half wave-plate is θ, then

Ω =
dθ

dt
(4.17)

θ = Ωt (4.18)

let the Jones electric �eld vector of input light is

Ein =
1√
2

[
1
iσ

]
(4.19)

then the Jones electric �eld vector of output light is

Eout(θ) = R(−θ)Mλ/2R(θ)Ein = R(−θ)
[
1 0
0 −1

]
R(θ)Ein

=

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
1√
2

[
1
iσ

]
=

1√
2

[
1

−iσ

]
exp(i2σθ)

⇒ Eout(t) =
1√
2

[
1

−iσ

]
exp(i2σΩt) (4.20)

If angular frequency of the input beam is ω, then the angular frequency of output
beam be (ω + 2σΩ). So change in angular frequency, ∆ω = 2σΩ. This is spin-dependant
rotational Doppler shift of SAM carrying light beam. [1]

4.4 Types of SOI

We have discussed brief of angular momentum of light in previous chapter. The di�erent
types of angular momentum a EM beam carries are

1. Spin AM (S) or SAM

2. Intrinsic orbital AM (Lint) or IOAM

3. Extrinsic orbital AM (Lext) or EOAM

SAM is associated with degree of circular polarization and also intrinsic in nature. The
IOAM is associated with the optical vortex structure of the beam (e.g. vortex beam like
LG beam), so it is intrinsic. Whereas the EOAM is associated with the trajectory of
centroid of the beam. [41] (see �g 19)

(a) SAM of RCP beam of σ =
−1

(b) Intrinsic OAM of vortex
beam of l = 2

(c) Extrinsic OAM of beam at
R away from origin

Figure 19: Angular momentum of paraxial beam, yellow arrow denotes linear momentum
and red arrow denotes angular momentum (ref. [39])
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The inter-conversion between these di�erent angular momentum in a process represents
spin-orbit interaction of light. [39] The three type of interaction are

1. between S and Lint

2. between S and Lext

3. between Lint and Lext

In the later section, we will see several manifestation of those interactions.

4.5 SOI in anisotropic medium

Inhomogeneous anisotropic medium has spatially varying anisotropy axis (i.e. bire-
fringent or dichroic. Here SOI deals with spin �ipping, spin-to-orbital angular momentum
conversion etc. To illustrate these events, we will consider speci�c cases.

A simple case of homogenous medium is when a circularly polarized light passes through
quarter wave-plate, it become linearly polarized light, so the SAM transformation is

σ = ±1 −→ σ = 0

In that case, ±ℏ SAM carried by each photon of circularly polarized light, is transferred
to the wave plate. Similarly for half wave-plate, the SAM transformation is

σ = ±1 −→ σ = ∓1

So the spin is �ipped.

Before going into more complex cases, we discuss about q-plate. Q-plate is an birefrin-
gent anisotropic media of speci�c phase retardation across the slab with an inhomogeneous
orientation of the fast (or slow) optical axis lying parallel to the slab planes whose local
alignment of birefringent fast axis varies linearly with the azimuth angle of the q-plate.
[42] Let local alignment angle is α, and the azimuth angle is ϕ, then,

α(ϕ) = qϕ+ α0 (4.21)

Figure 20: local birefringent fast axis alignment in q-plate
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Now the corresponding Jones matrix at each point of the q-plate of phase retardation
of π, will be [42]

M q(ϕ) = R(−α)Mλ/2R(α) = R(−α)
[
1 0
0 −1

]
R(α)

=

[
cos(2α) sin(2α)
sin(2α) − cos(2α)

]
(4.22)

Let considering transversal of electric �eld, for each ray of a paraxial beam of circular
polarization (σ = ±1) the Jones electric �eld is

Ein =
1√
2

[
1
iσ

]
(4.23)

then the output electric �led vector will be

Eout(ϕ) = M q(ϕ)
1√
2

[
1
iσ

]
= exp(i2σα)

1√
2

[
1

−iσ

]
=

1√
2

[
1

−iσ

]
exp(i2σqϕ) exp(i2σα0)

(4.24)

So the output beam has spin �ipping. Moreover the beam has acquired a spin-dependant
phase factor exp(i2σqϕ), which makes it a vortex beam. From 3.31 we see that output
light carries 2qℏ angular momentum per photon. Here the change of angular momentum
is

(σ = ±1, l = 0) −→ (σ = ∓1, l = ±2q)

So to keep total angular momentum per photon conserved, q = 1.

Now let the q-plate is of phase retardation of π/2, then

M q(ϕ) = R(−α)Mλ/4R(α) = R(−α)
[
1 0
0 i

]
R(α)

=

[
cos2(α) + i sin2(α) (1− i) sin(α) cos(α)
(1− i) sin(α) cos(α) sin2(α) + i cos2(α)

]
(4.25)

Putting circularly polarized light (as in Pancharatnam-Berry phase, see table 5), electric
�led vector will be

Eout(ϕ) = M q(ϕ)
1√
2

[
1
iσ

]
= exp(iσα)

[
cos(α− σπ/4)
sin(α− σπ/4)

]
=

[
cos(α− σπ/4)
sin(α− σπ/4)

]
exp(iσqϕ) exp(iσα0) (4.26)

So the output beam has a phase factor exp(iσqϕ). Here the change of angular momentum
is

(σ = ±1, l = 0) −→ (σ = 0, l = ±q)

So to keep total angular momentum per photon conserved, q = 1.
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(a) q = 0, α0 = 0 (b) q = 0.5, α0 = 0 (c) q = 1, α0 = 0 (d) q = 1, α0 = π/2

Figure 21: Q-plate of di�erent q and α0

Now we will discuss about the di�ractive optical element, especially computer-generated
hologram (CGH). Its advantage is that, it can mimic any refractive element of choice, but
only for at a single wavelength. To produce helical phase front, CHG (forked di�raction
gratings or spiral Fresnel lenses, see �g 22,23) is used which is combination of helical phase
hologram and linear phase ramp17 with modulo 2π. [43]

(a) l = 1 (b) l = 2 (c) l = 3

Figure 22: Helical phase hologram for di�erent values of l

(a) Helical phase

+

(b) Linear phase

=

(c) Forked phase

Figure 23: CHG used to generate helical phase front

If input beam, J in of planer phase front passes through the CGH given �g 23c), then
output beam is Jout s.t.,

Jout = J in exp(ilϕ) (4.27)

which has helical phase structure resulting non-zero OAM. So change in OAM is,

(l = 0) −→ (l = l)

17Linear phase ramp is used to deviate the beam from the former propagation axis. [44]
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So, per photon lℏ OAM is transferred to CGH. Further, this can be used in beam shaping,
wavefront shaping, LG-HG beam transformation etc. [43][22]
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